Friday 24 October 2014

Laboratory guidelines coming soon.....

Laboratory guidelines coming soon.....

Environmental Engineering II Unit 1

INTRODUCTION:

Necessity for sanitation

Every community produces both liquid and solid wastes .The liquid portion –waste water– is essentially the water supply of the community after it has been fouled by a variety of uses such as spent water from bathroom kitchen, lavatory basins, house and street washings, from various industrial processes semi solid wastes of human and animal excreta, dry refuse of house and street sweepings, broken furniture, wastes from industries etc are produced daily.

If proper arrangements for the collection, treatment and disposal are not made, they will go on accumulating and create foul condition. If untreated water is accumulating, the decomposition of the organic materials it contains can lead to the production of large quantity of mal odorous gases. It also contains nutrients, which can stimulate the growth of aquatic plants and it may contain toxic compounds. Therefore in the interest of community of the city or town, it is most essential to collect, treat and dispose of all the waste products of the city in such a way that it may not cause any hazardous effects on people residing in town and environment.

Waste water engineering is defined as the branch of the environmental engineering where the basic principles of the science and engineering for the problems of the water pollution problems. The ultimate goal of the waste water management is the protection of the environmental in manner commensurate with the economic, social and political concerns.

Although the collection of stream water and drainage dates from ancient times the collection of waste water can be treated only to the early 1800s. The systematic treatment of waste water followed in the 1800s and 1900s.

Importance of sewerage system

One of the fundamental principles of sanitation of the community is to remove all decomposable matter, solid waste, liquid or gaseous away from the premises of dwellings as fast as possible after it is produced, to a safe place, without causing any nuisance and dispose it in a suitable manner so as to make it permanently harmless.

Sanitation though motivated primarily for meeting the ends of preventive health has come to be recognized as a way of life. In this context, development of the sanitation infrastructure of any country could possibly serve as a sensitive index of its level of prosperity. It is needless to emphasize that for attaining the goals of good sanitation, sewerage system is very essential. While provision of potable drinking water takes precedence in the order of provision of Environmental Engineering Services, the importance of sewerage system cannot be last sight and cannot be allowed to lag behind, as all the water used by the community has to flow back as the sewage loaded with the wastes of community living, unless properly collected, treated and disposed off , this would create a serious water pollution problems.


Definitions of some common terms used in the sanitary engineering.

REFUSE:

This is the most general term to indicate the wastes which include all the rejects left as worthless, sewage, sullage – all these terms are included in this term.

GARBAGE:

It is a dry refuse which includes, waste papers, sweepings from streets and markets, vegetable peelings etc. The quantity of garbage per head per day amounts to be about .14 to .24 kg for Indian conditions. Garbage contains large amount of organic and putrifying matter and therefore should be removed as quickly as possible.

RUBBISH:

It consists of sundry solid wastes from the residencies, offices and other buildings. Broken furniture, paper, rags etc are included in this term. It is generally dry and combustible.

SULLAGE:

It is the discharge from the bath rooms, kitchens, wash basins etc., it does not include discharge from the lavatories, hospitals, operation theaters, slaughter houses which has a high organic matter.

SEWAGE:

It is a dilute mixture of the wastes of various types from the residential, public and industrial places. It includes sullage water and foul discharge from the water closets, urinals, hospitals, stables, etc.

STORM WATER:

It is the surface runoff obtained during and after the rainfall which enters sewers through inlet. Storm water is not foul as sewage and hence it can be carried in the open drains and can be disposed off in the natural rivers without any difficulty.

SANITARY SEWAGE:

It is the sewage obtained from the residential buildings & industrial effluents establishments‘. Being extremely foul it should be carried through underground conduits.

DOMESTIC SEWAGE:

It is the sewage obtained from the lavatory basins, urinals &water closets of houses, offices & institutions. It is highly foul on account of night soil and urine contained in it. Night soil starts putrefying & gives offensive smell. It may contain large amount of bacteria due to the excremental wastes of patients. This sewage requires great handling &disposal.



INDUSTRIAL SEWAGE:

It consists of spent water from industries and commercial areas. The degree of foulness depends on the nature of the industry concerned and processes involved.

SEWERS:

Ewers are underground pipes which carry the sewage to a point of disposal.

SEWERAGE:

The entire system of collecting, carrying &disposal of sewage through sewers is known as sewerage.

DRY WEATHER FLOW (DWF):

Domestic sewage and industrial sewage collectively, is called as DWF. It does not contain storm water. It indicates the normal flow during dry season.

BACTERIA:

These are the microscopic organisms. The following are the groups of bacteria:

-Aerobic bacteria: they require oxygen &light for their survival.

-Anaerobic bacteria: they do not require free oxygen and light for survival.

- Facultative bacteria: they can exist in the presence or absence of oxygen. They grow more in absence of air.

Invert:

It is the lowest point of the interior of the sewer at any c/s.

SLUDGE:

It is the organic matter deposited in the sedimentation tank during treatment.



Methods of domestic waste water disposal

After the waste water is treated it is disposed in the nature in the following two principal methods

a.       Disposal by Dilution where large receiving water bodies area available

b.      Land disposal where  sufficient land is available

The choice of method of disposal depends on many factors and is discussed later.

Sanitary engg starts at the point where water supply engg ends.

It can be classified as

-         Collection works

-         Treatment works

-         Disposal works

The collection consists of collecting tall types of waste products of town. Refuse is collected separately. The collection works should be such that waste matters can be transported quickly and steadily to the treatment works. The system employed should be self cleaning and economical.

Treatment is required to treat the sewage before disposal so that it may not pollute the atmosphere & the water body in which it will be disposed of .The type of treatment processes depend on the nature of the waste water characteristics and hygiene, aesthetics and economical aspects.

The treated water is disposed of in various ways by irrigating fields or discharging in to natural water courses.

Different Methods of domestic waste water disposal include (Systems of Sanitation)

1)      CONSERVENCY SYSTEM

2)      WATER CARRIAGE SYSTEM

CONSERVENCY SYSTEM

Sometimes the system is also called as dry system. This is out of date system but is prevailing in small towns and villages. Various types of refuse and storm water are collected conveyed and disposed of separately. Garbage is collected in dustbins placed along the roads from where it is conveyed by trucks ones or twice a day to the point of disposal. all the non combustible portion of garbage such as sand dust clay etc are used for filling the low level areas to reclaim land for the future development of the town. The combustible portion of the garbage is burnt. The decaying matters are dried and disposed of by burning or the manufacture of manure.

Human excreta are collected separately in conservancy latrines.The liquid and semi liquid wastes are collected separately after removal of night soil it is taken outside the town in trucks and buried in trenches. After 2-3 years the buried night soil is converted into excellent manure. In conservancy system sullage and storm water are carried separately in closed drains to the point of disposal where they are allowed to mix with river water without treatment.
WATER CARRIAGE SYSTEM

With development and advancement of the cities urgent need was felt to replace conservancy system with some more improved type of system in which human agency should not be used for the collection and conveyance of sewage .After large number of experiments it was found that the water is the only cheapest substance which can be easily used for the collection and conveyance of sewage. As in this system water is the main substance therefore it is called as WATER CARRIAGE SYSTEM.

In this system the excremental matter is mixed up in large quantity of water their ars taken out from the city through properly designed sewerage systems, where they are disposed of after necessary treatment in a satisfactory manner.

The sewages so formed in water carriage system consist of 99.9% of water and .1% solids .All these solids remain in suspension and do not changes the specific gravity of water therefore all the hydraulic formulae can be directly used in the design of sewerage system and treatment plants.




CONSERVENCY  SYSTEM

WATER CARRIAGE SYSTEM


1)  Very cheap in initial cost.
1) It involves high initial cost.


2) Due to foul smells from the latrines, they
2)
As there  is  no  foul smell  latrines remain


are to be constructed away from living room so
clean and neat and hence are constructed with


building  cannot  be  constructed  as  compact
  rooms, therefore buildings may be compact.


units.




3)The aesthetic appearance of the city cannot
3)
Good aesthetic appearance of city can be


be improved
     obtained.


4)For  burial of excremental  matter large area
4)
Less  area  is  required  as  compared  to


is required.
conservancy system.


5) Excreta is not removed immediately hence
5)
Excreta  are  removed  immediately  with


its   decomposition   starts   before   removal,
water, no problem of foul smell or hygienic


causing nuisance smell.
trouble.


6)  This  system is  fully depended on human
6)As  no  human  agency  is  involved  in  this


agency .In case of strike by the sweepers; there
system ,there is no such problem as in case of


is danger of insanitary conditions in city.
conservancy system






SEWERAGE SYSTEMS:

1)      SEPARATE SYSTEM OF SEWAGE

2)      COMBINED SYSTEM OF SEWAGE

3)      PARTIALLY COMINED OR PARTIALLY SEPARATE SYSTEM

1.      SEPARATE SYSTEM OF SEWERAGE

In this system two sets of sewers are laid .The sanitary sewage is carried through sanitary sewers while the storm sewage is carried through storm sewers. The sewage is carried to the treatment plant and storm water is disposed of to the river.

ADVANTAGES:

1)  Size of the sewers are small

2)  Sewage load on treatment unit is less

3)  Rivers are not polluted

4)   Storm water can be discharged to rivers without treatment. DISADVANTAGE

1)  Sewerage being small, difficulty in cleaning them

2)  Frequent choking problem will be their

3)  System proves costly as it involves two sets of sewers

4)    the use of storm sewer is only partial because in dry season the will be converted in to dumping places and may get clogged.

2.  COMBINED SYSTEM OF SEWAGE

When only one set of sewers are used to carry both sanitary sewage and surface water. This system is called combined system.

Sewage and storm water both are carried to the treatment plant through combined sewers

ADVANTAGES:

1)  Size of the sewers being large, chocking problems are less and easy to clean.

2)  It proves economical as 1 set of sewers are laid.

3)  Because of dilution of sanitary sewage with storm water nuisance potential is reduced




DIS ADVANTAGES:

1)      Size of the sewers being large, difficulty in handling and transportation.

2)      Load on treatment plant is unnecessarily increased

3)      It is uneconomical if pumping is needed because of large amount of combined flow.

4)      Unnecessarily storm water is polluted.


3.  PARTIALLY COMINED OR PARTIALLY SEPARATE SYSTEM

A portion of storm water during rain is allowed to enter sanitary sewer to treatment plants while the remaining storm water is carried through open drains to the point of disposal.

Advantages:-

1.      The sizes of sewers are not very large as some portion of storm water is carried through open drains.

2.      Combines the advantages of both the previous systems.

3.      Silting problem is completely eliminated.

Disadvantages:-

1.      During dry weather, the velocity of flow may be low.

2.      The storm water is unnecessary put load on to the treatment plants to extend.

3.      Pumping of storm water in unnecessary over-load on the pumps.

Suitable conditions for separate sewerage systems:-

A separate system would be suitable for use under the following situations:

1.      Where rainfall is uneven.

2.      Where sanitary sewage is to be pumped.

3.      The drainage area is steep, allowing to runoff quickly.

4.      Sewers are to be constructed in rocky strata. The large combined sewers would be more expensive.



Suitable conditions for combined system:-

1.      Rainfall in even throughout the year.

2.      Both the sanitary sewage and the storm water have to be pumped.

3.      The area to be sewered is heavily built up and space for laying two sets of pipes is not enough.

4.      Effective or quicker flows have to be provided.

After studying the advantages and disadvantages of both the systems, present day construction of sewers is largely confined to the separate systems except in those cities where combined system is already existing. In places where rainfall is confined to one season of the year, like India and even in temperate regions, separate system are most suitable.

Table -2.2:- Comparison of Separate and Combined systems

Sl.
Separate system
Combined system
no.


1.
The quantity of sewage to be treated is less,
As the treatments of both are done,

because no treatment of storm water is done.
the treatment is costly.
2.
In the cities of more rainfall this system is
In  the  cities  of  less  rainfall  this

more suitable.
system is suitable.
3.
As two sets of sewer lines are to laid, this
Overall  construction  cost  is  higher

system is cheaper because sewage is carried
than separate system.

in underground sewers and storm water  in


open drains.

4.
In narrow streets, it is difficult to use this
It is more suitable in narrow streets.

system.

5.
Less degree of sanitation is achieved in this
High degree of sanitation is achieved

system, as storm water is disposed without
in this system.

any treatment.



Sources of Sewage:-

Sanitary sewage is produced from the following sources:

1.      When the water is supplied by water works authorities or provided from private sources, it is used for various purposes like bathing, utensil cleaning, for flushing water closets and urinals or washing clothes or any other domestic use. The spent water for all the above needs forms the sewage.

2.      Industries use the water for manufacturing various products and thus develop the sewage.

3.      Water supplied to schools, cinemas, hotels, railway stations, etc., when gets used develops sewage.

4.      Ground water infiltration into sewers through loose joints.

5.      Unauthorized entrance of rain water in sewer lines.

Nature of Sewage:-

Sewage is a dilute mixture of the various types of wastes from the residential, public and industrial places. The characteristics and composition i.e. the nature of sewage mainly depends on this source. Sewage contains organic and inorganic matters which may be dissolved, suspension and colloidal state. Sewage also contains various types of bacteria, virus, protozoa, etc. sewage may also contain toxic or other similar materials which might have got entry from industrial discharges. Before the design of any sewage treatment plant the knowledge of the nature of sewage is essential.







Quantity of Sanitary Sewage and Storm Water:-

The determination of sanitary sewage is necessary because of the following factors which depend on this:

1.      To design the sewerage schemes as well as to dispose a treated sewage efficiently.

2.      The size, shape and depth of sewers depend on quantity of sewage.

3.      The size of pumping unit depends on the quantity of sewage.

Estimate of Sanitary Sewage:-

Sanitary sewage is mostly the spent water of the community into sewer system with some groundwater and a fraction of the storm runoff from the area, draining into it. Before designing the sewerage system, it is essential to know the quantity of sewage that will flow through the sewer.

The sewage may be classified under two heads:

1.      The sanitary sewage, and

2.      Storm water

Sanitary sewage is also called as the Dry Weather Flow (D.W.F), which includes the domestic sewage obtained from residential and residential and industrials etc., and the industrial sewage or trade waste coming from manufacturing units and other concerns.

Storm water consists of runoff available from roots, yards and open spaces during rainfall.

Quantity of Sewage:-

It is usual to assume that the rate of sewage flow, including a moderate allowance for infiltration equals to average rate of water consumption which is 135 litre/ head /day according to Indian Standards. It varies widely depending on size of the town etc. this quantity is known as Dry Weather Flow (D.W.F). It is the quantity of water that flows through sewer in dry weather when no storm water is in the sewer.

Rate of flow varies throughout 24 hours and is usually the greatest in the fore-noon and very small from midnight to early morning. For determining the size of sewer, the maximum flow should be taken as three times the D.W.F.
Design Discharge of Sanitary Sewage

The total quantity of sewage generated per day is estimated as product of forecasted population at the end of design period considering per capita sewage generation and appropriate peak factor. The per capita sewage generation can be considered as 75 to 80% of the per capita water supplied per day. The increase in population also result in increase in per capita water demand and hence, per capita production of sewage. This increase in water demand occurs due to increase in living standards, betterment in economic condition, changes in habit of people, and enhanced demand for public utilities.




Factors affecting the quantity of sewage flow:-

The quantity of sanitary sewage is mainly affected by the following factors:

1.      Population

2.      Type of area

3.      Rate of water supply

4.      Infiltration and exfiltration

In addition to above, it may also be affected by habits of people, number of industries and water pressure etc.

Population:-

The quantity of sanitary sewage directly depends on the population. As the population increases the quantity of sanitary sewage also increases. The quantity of water supply is equal to the rate of water supply multiplied by the population. There are several methods used for forecasting the population of a community.

Type of area covered:-

The quantity of sanitary sewage also depends on the type of area as residential, industrial or commercial. The quantity of sewage developed from residential areas depend on the rate of water supply to that area, which is expressed a litres/ capita/ day and this quantity is obtained by multiplying the population with this factor.

The quantity of sewage produced by various industries depends on their various industrial processes, which is different for each industry.

Similarly the quantity of sewage obtained from commercial and public places can be determined by studying the development of other such places.

Rate of water supply:-

Truly speaking the quantity of used water discharged into a sewer system should be a little less than the amount of water originally supplied to the community. This is because of the fact that all the water supplied does not reach sewers owing to such losses as leakage in pipes or such deductions as lawn sprinkling, manufacturing processes etc. However, these losses may be largely be made up by such additions as surface drainage, groundwater infiltration, water supply from private wells etc. On an average, therefore, the quantity of sewage maybe considered to be nearly equal to the quantity of water supplied.

Groundwater infiltration and exfiltration:-

The quantity of sanitary sewage is also affected by groundwater infiltration through joints. The quantity will depend on, the nature of soil, materials of sewers, type of joints in sewer line, workmanship in laying sewers and position of underground water table.

Infiltration causes increase to the ―legitimate‖ flows in urban sewerage systems. Infiltration represents a slow response process resulting in increased flows mainly due to seasonally-elevated groundwater entering the drainage system, and primarily occurring through defects in the pipe network.

Exfiltration represents losses from the sewer pipe, resulting in reduced conveyance flows and is due to leaks from defects in the sewer pipe walls as well as overflow discharge into manholes, chambers and connecting surface water pipes. The physical defects are due to a combination of factors including poor construction and pipe joint fittings, root penetration, illicit connections, biochemical corrosion, soil conditions and traffic loadings as well as aggressive groundwater.

It is clear that Infiltration and Exfiltration involve flows passing through physical defects in the sewer fabric and they will often occur concurrently during fluctuations in groundwater levels, and particularly in association with wet weather events; both of which can generate locally high hydraulic gradients. Exfiltration losses are much less obvious and modest than infiltration gains, and are therefore much more difficult to identify and quantify. However, being dispersed in terms of their spatial distribution in the sewer pipe, exfiltration losses can have potentially significant risks for groundwater quality. The episodic but persistent reverse ―pumping‖ effect of hydraulic gain and loss will inevitably lead to long term scouring of pipe surrounds and foundations resulting in pipe collapse and even surface subsidence.



Suggested estimates for groundwater infiltration for sewers laid below ground water table are as follows:


Minimum
Maximum
Litre/ day/ hectare
5,000
50,000
Lpd/ km of sewer/cm dia.
500
5,000

Design Period

The future period for which the provision is made in designing the capacities of the various components of the sewerage scheme is known as the design period. The design period depends upon the following:
Ease and difficulty in expansion, Amount and availability of investment,

Anticipated rate of population growth, including shifts in communities, industries and commercial investments,
Hydraulic constraints of the systems designed, and
Life of the material and equipment.
Following design period can be considered for different components of sewerage scheme.
1.  Laterals less than 15 cm diameter : Full development

2.  Trunk or main sewers : 40 to 50 years
3.  Treatment Units : 15 to 20 years

4.  Pumping plant : 5 to 10 years
minimum velocity of about 0.45 m/s at the time of minimum flow (assumed to be 1/3rd of average flow). The designer should also ensure that a velocity of 0.9 m/s is developed atleast at the time of maximum flow and preferably during the average flow periods also. Moreover, care should be taken to see that at the time of maximum flow, the velocity generated does not exceed the scouring value.

Quantity of storm water flow:-

When rain falls over the ground surface, a part of it percolates into the ground, a part is evaporated in the atmosphere and the remaining part overflows as storm water. This quantity of storm water is very large as compared with sanitary sewage.

Factors affecting storm water:-

The following are factors which affect the quantity of storm water:

1.      Rainfall intensity and duration.

2.      Area of the catchment.

3.      Slope and shape of the catchment area.

4.      Nature of the soil and the degree of porosity.

5.      Initial state of the catchment.
If rainfall intensity and duration is more, large will be the quantity of storm water available. If the rainfall takes place very slowly even though it continues for the whole day, the quantity of storm water available will be less.

Harder surface yield more runoff than soft, rough surfaces. Greater the catchment area greater will be the amount of storm water. Fan shaped and steep areas contribute more quantity of storm water. In addition to the above it also depends on the temperature, humidity, wind etc.

Estimate of quantity of storm water:-

Generally there are two methods by which the quantity of storm water is calculated:

1.      Rational method

2.      Empirical formulae method

In both the above methods, the quantity of storm water is a function of the area, the intensity of rainfall and the co-efficient of runoff.


















































The time of concentration refers to the time at which the whole area just contributes runoff to a point.
tc    te    tf

Where,

tc = time of concentration



te = time of entry to the inlet (usually taken as 5 – 10 min) tf = time of flow in the sewer

Time of concentration is made up of inlet time (over land flow) and channel flow time.

Time of entry (inlet time or overland flow): is the time required for water to reach a defined channel such as a street gutter, plus the gutter flow time to the inlet.

Channel flow time: is the time of flow through the sewers to the point at which rate of flow is being assessed.The channel flow time can be estimated with reasonable accuracy from the hydraulic characteristics of the sewer. The channel flow time is then determined as the flow length divided by the average velocity.

The inlet time is affected by numerous factors, such as rainfall intensity, surface slope, surface roughness, flow distance, infiltration capacity, and depression storage. Because of this, accurate values are difficult to obtain. Design inlet flow times of from 5 to 30 min are used in practice.

Estimating Time of Concentration
There are many methods for estimating tc. In fact, just about every hydrologist or engineer has a favorite method. All methods for estimating tc are empirical, that is, each is based on the analysis of one or more datasets. The methods are not, in general, based on theoretical fluid mechanics.

For application of the rational method, TxDOT recommends that tc be less than 300 minutes (5 hours) and greater than 10 minutes. Other agencies require that tc be greater than 5 minutes. The concept is that estimates of i become unacceptably large for durations less than 5 or 10 minutes. For long durations (such as longer than 300 minutes), the assumption of a relatively steady rainfall rate is less valid.

Morgali and Linsley Method

For small urban areas with drainage areas less than ten or twenty acres, and for which the drainage is basically planar, the method developed by Morgali and Linsley (1965) is useful. It is expressed as

tc =0.94(nL)0.6
i0.4 S0.3

where:

tc = time of concentration (min),
i = design rainfall intensity (in/hr),
n = Manning surface roughness (dimensionless), L = length of flow (ft), and
S = slope of flow (dimensionless).



Kirpich Method

For small drainage basins that are dominated by channel flow, the Kirpich (1940) equation

can be used. The Kirpich equation is tc = 0.0078(L3/h)0.385
where:
tc = time of concentration (min),

L = length of main channel (ft), and h = relief along main channel (ft).

The Kirpich method is limited to watershed with a drainage area of about 200 acres.

Kerby-Hatheway Method

For small watersheds where overland flow is an important component, but the assumptions inherent in the Morgali and Linsley approach are not appropriate, then the Kerby (1959) method can be used. The Kerby-Hatheway equation is

tc = (0.67NL/√S)0.467

where:

tc = time of concentration (min),

N = Kerby roughness parameter (dimensionless), and S = overland flow slope (dimensionless).
Problem:

Calculate the quantity of sewage for separate and partially separate systems for a town, given the following data:

i.
Area of the town
– 250 hectares
ii.
Intensity of rainfall
– 50 mm/hr

iii.                Population density   – 300 persons/hectare
iv.                Rate of water supply – 250 ltrs/capita/day

v.         Peak factor                 - 2.0
vi.        Surface classification:

----------------------------------------------------------------------------
Type of surface          % Area       Run-off co-efficient

----------------------------------------------------------------------------
Roofs                             50%                  0.9

Paved surfaces              20%                  0.85
Non paved surfaces      30%                  0.30

----------------------------------------------------------------------------
Assume 80% of the water supplied reaches the sewer.


Answer:

Quantity of sewage for separate system, Q1 = 0.4166 m3/sec
Co-efficient of run-off, C = 0.8857
Quantity of storm water partially separate system,
Q2 = 17.222 m3/sec

Quantity of sewage for separate system, Q=Q1+ Q2= 17.639 m3/sec



Problem

A city has a projected population of 60,000 spread over area of 50 hectare. Find the design discharge for the separate sewer line by assuming rate of water supply of 250 LPCD and out of this total supply only 75 % reaches in sewer as wastewater. Make necessary assumption whenever necessary.

Answer:
Given data
Q = 250 lit/capita/day

Sewage flow = 75% of water supply = 0.75* 250 = 187.5 LPCD

Total sewage generated = 187.5*60000/(24*3600) = 130.21 lit/sec = 0.13 m3/s
Assume peak factor = 2

Total design discharge = 0.26 m3/s.

Problem:

A population of 40,000 is residing in a town having an area of
60 hectares, if the average

coefficient of runoff for this area is 0.50 and the time of concentration of the design rain is 30 minutes. Calculate the discharge for which the sewer of a proposed combined system will be designed for the town in question.

Answer:

Storm discharge – 1.7 m3/sec
Sewage discharge – 0.0625 m3/sec

Combined discharge – 1.7625 m3/sec

Problem:

Calculate the quantity of sewage for combined system for a town, given the following data: 1. Area of the town = 500 hectares, 2. Time of concentration = 30 mins, 3. Population density = 300 persons / hectare, 4. Rate of water supply = 135 l / capita / day, 5. Peak factor = 2.0,


Type of surface
% Area
Run off coefficient
Roofs
50
0.95
Paved surfaces
30
0.80
Non paved surfaces
20
0.25
Assume 80% of the water supplied reaches the sewer.
Answer:


Population
P = 1,50,000

Quantity of sewage flow,
Q1 = 0.375 m3/sec

Co-efficient of run-off,
C  = 0.765

Intensity of rainfall,
I = 20.32 mm/hr

Quantity of storm water flow, Q2 = 21.59 m3/sec

Total combined flow,
Q = 21.965 m3/sec


Problem:

Design a circular stone - ware sewer with N value 0.012, running half - full to serve a town with

the following data:

Estimated population         = 1, 00,000

Rate of water supply          = 135 lpcd

Average sewage discharge = 85% of water supply

Peak flow factor
= 3
Slope of sewer
= 1:300

Is the velocity developed in the sewer in self - cleansing.

Answer:

Quantity of sewage flow, Q = 0.398 m3/sec -
Diameter of sewer, d = 0.7885 m

Velocity of flow, v = 1.63 m/sec
Velocity developed in the sewer is self cleansing